

Simultaneous Confidence Intervals Using Entire Solution Paths Xiaorui Zhu*; Peng Wang; Yichen Qin; University of Cincinnati

Introduction

An ideal simultaneous confidence intervals (SCI) for sparse linear model

- 1) should be as tight as possible and achieve the nominal confidence level simultaneously (coverage probability, the width of intervals of nonzero and zero coefficients);
- 2) should be able to imply the variable selection results in a way that the truly relevant and irrelevant coefficients could have nonzero and zero width intervals, respectively.

We propose a general approach to construct simultaneous confidence intervals based on entire solution paths and residual bootstraps.

General Approach for Constructing SCI

We define an **outlyingness score** for each bootstrap estimator to measure the relative location of a bootstrap estimator among all B bootstrap estimators as follow:

$$O^{(b)} = g(\hat{\beta}) = (o_1^{(b)}, \dots, o_d^{(b)}) \in \mathbb{R}^{+d}, \ b \in 1, \dots$$

Then, we can rule out α percent of outlying bootstrap estimators among all to construct the simultaneous confidence intervals with confidence level $1-\alpha$.

Two special instances of outlyingness score:

1.
$$O^{\mathrm{F},(b)} = (o^{\mathrm{F},(b)}) = g^{\mathrm{F}}(\hat{\boldsymbol{\beta}}) = \hat{F}(\gamma_b, \gamma_f) = \frac{(\mathrm{RSS}_{\gamma_b} - \mathrm{RSS}_{\gamma_f})/(d_{\gamma_b})}{\mathrm{RSS}_{\gamma_f}/df_{\gamma_b}}$$

2. $O^{\text{MaxMin},(b)} = (o_{\text{max}}^{(b)}, o_{\text{min}}^{(b)}) = g^{\text{MaxMin}}(\hat{\boldsymbol{\beta}})$ $= \left(\max_{j\in\{1,\ldots,p\}} \left(\frac{\hat{\beta}_{j}^{(b)} - \bar{\hat{\beta}}_{j}}{s.e_{\cdot\hat{\beta}_{j}}}\right), \min_{j\in\{1,\ldots,p\}} \left(\frac{\hat{\beta}_{j}^{(b)} - \bar{\hat{\beta}}_{j}}{s.e_{\cdot\hat{\beta}_{j}}}\right)\right)$

Procedure:	Simultaneous Confidence Intervals				
Step 1 :	Apply residual bootstrap for variable selection to obtain:				
Step 2:	$ ext{Construct outlyingness score: } O^{(b)} = (o_1, o_2, \dots, o_d) = g(m{k})$				
Step 3:	$\text{Construct a set } \mathcal{A}_\alpha \subset \{1,\ldots,B\}:$				
	$\mathcal{A}_lpha=\{b\in(1,\ldots,B);\; o_i^{(b)}\leq q_i(1-rac{lpha}{d}), i=1,\ldots,d\},$				
	where $q_i(1-rac{lpha}{d})$ is $(1-rac{lpha}{d})$ quintile of o_i ;				
Step 4 :	Construct the simultaneous confidence intervals (SCI) as				
	$ ext{SCI}(1-lpha) = \Big\{oldsymbol{eta} \in \mathbb{R}^p; \ \min_{b \in \mathcal{A}_lpha} eta_j^{(b)} \leq eta_j \leq \max_{b \in \mathcal{A}_lpha} eta_j^{(b)}, j = 1, \ldots \Big\}$				

, B.

 $(f_{\gamma_b} - df_{\gamma_f})$

$\{\hat{m{eta}}^{(b)}\}_{b=1}^{B};$ $(\hat{oldsymbol{eta}})\in \mathbb{R}^{+d};$

\ldots, p }.

Selection by Partitioning the Solution Paths (SPSP)

Geometrical Differences: Proposed vs. Debiased

Theoretical Results

Theorem: Under mild assumptions, for $\alpha \in (0, 1)$ and all $\beta \in \mathbb{R}^p$, we have

 $\mathbf{P}(\boldsymbol{\beta} \in \mathrm{SCI}_{n,(1-\alpha)}) \to 1 - \alpha \text{ as } n \to \infty.$

Simulation Example

- ✤ p=300, n=200 $\bigstar \beta^* = (0.9, -0.85, 0.93, -1, 0.8, -0.85, 0.88)$ Remaining coefficients equal zero
- Correlation between X_i and X_j is $0.5^{|i-j|}$

SPSP vs. Cross-Validation vs. Debiased

	W.Nzero	W.Zero	Cover Pr	Avg Card	Med Card	Std Card
n)	0.60	0.04	96.50	68.31	59.00	51.66
	0.61	0.06	98.50			
X	0.92	0.19	96.50	734.19	770.50	150.75
	0.92	0.19	96.50			
	0.64	0.21	66.00	949.24	950.00	1.56
	0.64	0.21	65.50			
	0.54	0.25	0.00	950.00	950.00	0.00
	0.54	0.25	0.00			
	0.45	0.00	92.50	1.00	1.00	0.00
	0.46	0.00	99.50			
	0.97	0.97	98.00			